
1

CISC 235 (Winter 2005) 1

Balanced Search Trees

• Balanced Search Trees are used to
efficiently implement the “Dictionary”
operation:
– INSERT
– DELETE
– FIND

CISC 235 (Winter 2005) 2

(Unordered) dictionary:
No relationship between distinct keys

Ordered dictionary:
Relationship between distinct keys
Allows, access in order of in/de-creasing keys
Additionally operations

closestElemBefore(Key k): find and return element with
largest key less than or equal to k
closestElemAfter(Key k)

Balanced Search trees can efficiently implement an
ordered dictionary.

2

CISC 235 (Winter 2005) 3

Balanced Search Trees

• The key to the efficiency of all balanced
search trees is that the height of a tree
holding N data elements is O(log N).

• The main difficulty in implementing
balanced search trees is maintaining the
O(log N) height.

CISC 235 (Winter 2005) 4

Balanced Multi-Way Search
Trees

• 2-3 tree and 2-4 tree.
• Balance is accomplished with SPLIT,

FUSE, and TRANSFER operations.
• Easiest balanced trees to understand and

implement.
• Drawback is that the space requirements

exceeds those of binary balanced search
trees.

3

CISC 235 (Winter 2005) 5

Binary Balanced Search Trees

• AVL trees, first published account of a
balanced search tree.

• Balancing is accomplished by SINGLE and
DOUBLE ROTATIONS

• Somewhat complicated to understand and
implement.

CISC 235 (Winter 2005) 6

Binary Balanced Search Trees

• Red-Black trees, simulates a 2-4 tree.
• Balancing is accomplished by SINGLE and

DOUBLE ROTATIONS, as well as a clever
“re-colouring” strategy

• Somewhat complicated to understand and
implement.

• A careful implementation leads to the most
efficient structure for an ordered dictionary.

4

CISC 235 (Winter 2005) 7

Binary Balanced Search Trees

• AA trees, simulates a 2-3 tree.
• Balancing is accomplished by SINGLE

ROTATIONS, coded as SPLIT and SKEW
• “Cleanest: of the balanced binary search

trees. Easier to understand and code.
• A careful implementation leads to a very

efficient structure for an ordered dictionary.

CISC 235 (Winter 2005) 8

AVL Trees: Definition
• An AVL Tree T

• is a BST

• with height-balance property: for every internal
node v of T, the heights of the children of v can differ
by at most 1.

• Example:

• AVL trees are named after the initials of their inventors:
Adel’son-Vel’skii and Landis.

44
7733

21 43
23

98
20

5

CISC 235 (Winter 2005) 9

Balance Factor

• Let v be an internal node of a binary tree
• The balance factor of v is defined as:
 (height of the left subtree of v) – (the height of the right

subtree of v)
• Alternative definition of AVL trees:

The balance factor of every internal node in an AVL tree is
–1, 0 or 1.

CISC 235 (Winter 2005) 10

Height of an AVL Tree
• Proposition: The height of an AVL tree T storing n
keys is O(log n).
• Justification: The easiest way to approach this problem is to try
to find the minimum number of internal nodes of an AVL tree of
height h: n(h).
• We see that n(1) = 1 and n(2) = 2
• for n (3), an AVL tree of height h with n(h) minimal contains
the root node, one AVL subtree of height n-1 and the other AVL
subtree of height n-2.
• i.e. n(h) = 1 + n(h-1) + n(h-2) {This is similar to the Fibonacci
recurrence, and we know that it has an exponential lower bound.}
• We can solve an easier recurrence n(h) > 2n(h-2) to get an
asymptotic bound.

6

CISC 235 (Winter 2005) 11

44
7733

21 43
23

98

If we insert a new node w into an AVL tree we may ruin the
balance. A rebalancing operation requires that we identify
three node in the tree. Let z be the first unbalanced node
encountered in the path from w to the root. Let y be the
child of z and x the child of y in the path from z to w. Note
that x may or may not be equal to w.

20
22

Inserting into an AVL tree

z
y

x

CISC 235 (Winter 2005) 12

 • Find x,y,z and relabel them a, b, c according to their
inorder traversal.
• Then relink as follows:

The Restructure Algorithm

a
b

c

 T0 T1 T2 T3

7

CISC 235 (Winter 2005) 13

The Restructure Algorithm
1. Let (a, b, c) be an inorder listing of the nodes x, y,

and z
2. Let (T0, T1, T2, T3) be an inorder listing of the four

subtrees of x, y, and z not rooted at x, y, or z
3. Replace subtree rooted at z with a new subtree

rooted at b
• Make a the left child of b and make T0, T1 the left

and right subtrees of a, respectively.
• Make c the right child of b and make T2, T3 be the

left and right subtrees of c, respectively

CISC 235 (Winter 2005) 14

Relabel x, y, z and identify T0, T1, T2, T3.

44
7733

21 43
23

98
20

z = c

y = a

x = b
T0

T3

T2
T1

22

8

CISC 235 (Winter 2005) 15

Restructure according to template.

44

77

3321
43

23

98

20
22

z = cy = a

x = b

T0

T3

T2

T1

44
7733

21 43
23

98
20

z = c

y = a

x = b
T0

T3

T2
T1

22

CISC 235 (Winter 2005) 16

• Going from left to right, label subtrees of x, y, and z
with T0, T1, T2 , and T3

• Label x, y, z with a, b, c based on order of nodes in
in-order traversal

• Examples:

T 0

T 1
T 2

T 3

c = x
b = y

a = z
a = z

b = x

c = y

T 0

T 2

T1

T 3

9

CISC 235 (Winter 2005) 17

Case 1: Single Rotations
Case 1: y in the middle, i.e. b=y

• perform “single rotation”
• y “rotated over” z

T0
T1

T2

T3

c = x
b = y

a = z

0 1 2T T T
T3

c = x
b = y

a = z
single rotation

T3T2T1

T0

a = x
b = y

c = z

T3
T2

T1

T0

a = x
b = y

c = z single rotation

left rotation

right rotation

CISC 235 (Winter 2005) 18

Case 2: Double Rotations
Case 2: x in the middle, i.e. b=x

• perform “double rotation”
• x “rotated” over y and then over z

double rotationa = z

b = x
c = y

T0
T2

T

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotation

1

c = z

b = x
a = y

T3
T1

T2

T0 T3

T1
T0 T2

c = z
b = x

a = y

10

CISC 235 (Winter 2005) 19

After performing a restructuring after an
insertion an AVL is guaranteed to retain BST
ordering, and will become balanced.

T0

T1 T2 T3

T0 T1

T2 T3

a = z

b = y

c = x

a = z
b = y

c = x

CISC 235 (Winter 2005) 20

Red-Black Tree
A red-black tree is a binary search tree with the following
properties:
• edges are colored red or black
• no two consecutive red edges on any root-leaf path
• same number of black edges on any root-leaf path
(black height)
• edges connecting leaves are black

11

CISC 235 (Winter 2005) 21

Now we see red-black trees are just a way of
representing 2-4 trees!

Note how (2,4) trees relate to red-black trees
 (2,4) Red-Black

CISC 235 (Winter 2005) 22

This implies that searches take time O(log N)!

Red-Black Tree Properties
N := # of internal nodes; L:= # leaves (= N + 1);
H:= height B:= black height
Property 1: 2B ≤ N + 1 ≤ 4B

Property 2: (1/2) log (N+1) ≤ B ≤ log(N+1)
Property 3: log (N+1) ≤ H ≤ 2log(N+1)

12

CISC 235 (Winter 2005) 23

Searching in a Red-Black Tree.

No different than searching in a binary search tree.

CISC 235 (Winter 2005) 24

Insertion into Red-Black Tree
1.Perform a standard search to find the leaf where the key
should be added.
2.Replace the leaf with an internal node with the new key
3.Color the incoming edge of the new node red.
4.Add two new leaves, and color their incoming edges
black.
5. If the parent had an
incoming red edge, we now
have two consecutive red
edges! We must reorganize
tree to remove that violation.
What must be done depends
on the sibling of the parent.

13

CISC 235 (Winter 2005) 25

Let:
n be the new node
p be its parent
g be its grandparent

Case 1: Incoming edge of p is black.

No restructuring required.

CISC 235 (Winter 2005) 26

restructure

Case 2: Incoming edge of p is red, and its sibling is black.
Restructure.

Observe that:
• Inorder remains unchanged
• Black depth is preserved for all leaves
• No more consecutive red edges!
• Corrects “malformed”
4-node in the
associated (2,4) tree.

14

CISC 235 (Winter 2005) 27

Case 3: Incoming edge of p is red and its sibling is also red.
Recolour.

Observe that:
• The black depth remains unchanged for all descendants of g.
• This process will continue upward beyond g if necessary:
rename g as n and repeat.
• Splits 5-node of the associated (2,4) tree

CISC 235 (Winter 2005) 28

• If two red edges are present, we do either
• a restructuring (with a single or double rotation) and stop, or
• a recouloring and possibly continue
• A restructuring takes constant time and is performed at most
once. It reorganizes an off-balanced section of the tree.
• Recolourings may continue up the tree and are executed O(log N)
times.
• The time complexity of an insertion is O(log N).

Summary of Insertion

15

CISC 235 (Winter 2005) 29

Summary of Red-Black Trees
• An insertion or deletion may cause a local perturbation (two
consecutive red edges, or a “double-black” edge)
• The perturbation is either
• resolved locally (restructuring), or propagated to a higher level
in the tree by recolouring.
• O(1) time for a restructuring or recolouring.
• At most one restructuring per insertion, and at most two
restructurings per deletion.
• O(log N) recolourings.
• Total time for insert or delete : O(log N)

